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Abstract: Adati and Miyazawa (1967), have studied on a Riemannian space
with recurrent conformally curvature and Deszcz (1976), has studied on semi-
composable conformally recurrent and conformally birecurrent Riemannian spaces.
After then, Negi (2017) have calculated Theorems on almost product and decom-
posable spaces. In this paper, we define and study decomposition on Kaehlerian
manifolds of conformal recurrent curvature tensor and some theorems are estab-
lished. Also, we have proved that if a Kaehlerian manifold &, of recurrent conformal
curvature is decomposable then the decomposition space €2,,_, is Einstein and if a
Kaehlerian conformally recurrent manifold k,, is decomposable then the recurrence
vector is a gradient or the decomposition space €2, has constant curvature.
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1. Introduction

A Riemannian space €, is decomposable (Walker 1950), if it is expressed as
a product €, x ,_, for some r, that is, if coordinates can be found so that it’s
metric takes the form:

r

ds® = Z Gapdztda® + Z g,\#dx’\dx“ (1.1)

a,b=1 A p=r+1
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where g, 1s function of x', 2%, ..., 2" only, and the gy, is function of is function of
"t ™2 2™ only.

The equation (1.1) of two parts is the metrics of €, and ,,_, called decom-
posable spaces of €,,. It is evident, from (1.1), that the Christoffel’s symbols, the
components of the curvature tensor, the Ricci tensor and their covariant deriva-
tives in €, are zero unless all the subscripts belong to the same suffix range 1,2,....,r
or r+1,r+1,....,n. In case, all the subscripts belong to the same suffix range, say,
1,2,....,r then the symbols and tensor components are the same for €2, as for 2,, and
covariant differentiation in €2, is the same as in €2,, with respect to z!, 22, ...., 2".

If one of the decomposition spaces, say, €),,_, is flat then €2, is described as a
flat extension of €2,. A Riemannian space €2,(n > 3) whose conformal curvature
tensor defined by:

Chijk = Rhnijr— (gneRij — gnj R+ 9i5 Rk — gin Rij) + ( )(ghkgij —9nj9ik)

n—2 n—1)(n—2
(1.2)

satisfies the relation:
Chijkg — 01Chijr = 0 (1.3)

for some non-zero vector ¢; is said to be a space of recurrent conformal curvature or
conformally recurrent space. If a conformally recurrent space €2, is decomposable
into a product €2, x €2,,_,. then one of the decomposable spaces is flat and the other
is a space of recurrent curvature or both are spaces of constant curvature.

2. Decomposable on Kaehlerian Manifolds of Conformal Recurrent Cur-
vature Tensor

We have a space of recurrent conformal curvature on Kaehlerian manifold K,
as decomposition spaces, that is, as a product €, x ,_, with its metric in the
form (1.1). The recurrence vector ¢; is, without loss of simplification, understood
to be non-zero for some suffix a on the range 1,2,....r.

Theorem 2.1. If a Kaehlerian manifold K, of recurrent conformal curvature is
decomposable then the decomposition space €,,_, is Einstein.

Proof. Let a Riemannian space {2, be there of recurrent conformal curvature.
Equation (1.3) with (1.2) and multiplying by ¢"!, we have

1

; 1

! !
Rijpy = 5 (Rijw — Rinj + 9ii I — 9inRj) + m(ﬂhkR,k — gniR5)
1

. 4 R
i ] )
= 5lRijk — 7,” —9 ((5le] — (5]Rzk + gijélRK — gikéjRj) + —(TL — 1)(n — 2) (6kgij — 6jgik)
(2.1)
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1
In virtue of the relations R, ; = Ry — Rir; and R ; = §R,k takes the forms

=3 p _poy__ L
(n - 2) [(le,k RZkJ) 2(71 o 1)(

X (0kRij — 0; Ry + g0 Ry, — gind; RY) +

i 1
i B = g j)] = OBy, — ——

(n—1)(n—2) (Orgij — dj9a)  (2.2)

Put i =\, 7 = p and 6 = a in (2.2) which then reduced to
(n—3) R

2(n _ 1)gApR,(L — 6‘1R>‘/»L -+ g)\#(isil — méaR)\#, (23)
Multiplying (2.3) by g™ yields
(n—3)(n—1) (-
a — 6& “ —7)9, — 50,
2(TL—]_> R’ R +(n 7”) ZR” n_l R
Hence we find ; ) B
Ol = R, — ——0,R" 3a 2.4
Hha 2(71—1) ’ n—r +7”L—1 : ( )

It therefore follows from (2.3) and (2.4) that

a

§a<R)\,u - g)\,u.) = 0.

n—r
Since J, # 0 for some a, we have

Ra

R)\u = T.g)\u.

n
That means that the decomposition space 2,,_, is Einstein. Again, we have

Theorem 2.2. In a decomposable space §2, = Q. X Q,_,. of recurrent conformal
curvature on Kaehlerian manifold k, has its curvature tensor satisfying the relation:
Rpgrst = 01T ,qrs, where

RCL
(n—r)n—r—1)
Proof. We have use of (1.2) and noted (1.3), then

qurs = Llpgrs + (gpsgqr - gprgqs)- (25)

1 1
Rhyijrg — m(ghksz,l — gnjRiky + 9ij Rk — giRrj) + mR,l (9knGij — Gnjgin)
1 R
= 0y[Rhijr — mghkRij — gnjRir + 9ij Rk — ginBnj) + m(ghkgij — (9njgir)]-

(2.6)
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Put h=p,i=Xj=¢q,k=p,and [ =r in (2.6). This admits

1 R
PuBpgr — mgkugqu,r =0, [gAuqu + Gpg P — mgkugpq]-

On applying theorem (2.1), then above is

1 R® R
Rpgr = " — 19qu,7" + 6 [Rpg + n— T 1gpq]- (2.7)
Setting all the subscripts h,i,j, &, in (2.6) from the same suffix range 1,2,...,r
and taking into account (2.7) we see that

1
R rst R sYqr — rYqs
pqrs,t (n N 1)(” _ 2) ,t(gp gq gp gq )

1 2R° R

—5 0 = ) (9psar — GprGas) (2.8)

= 5lqu'rs + n

In consequence of the relation:

1 -2
B n r R, + R

(n—l)R’t: (n—r)n—r—1) n—lét

Equation (2.8) simplifies to

n—r)(n—r—-1

qurs,t - 5t [qurs + ) (gpsgqr - gprgqs)] - 5tqurs.
This completes the proof.
From the above two theorems, then we have the followings:

Corollary 2.1. The recurrent conformal curvature on Kaehlerian manifold K,, of
a Riemannian space ), satisfies the identity:

Rpijieim — Bhijemi + Rikimn — Rikiman — Rimni jk — Rimnig; = 0

Corollary 2.2. If ang, by are number satisfying:aqs = g, @gyba + ayabg+aasby, =
0 for o, B,y =1,2,...,n, then all the a,z are non-zero or all the b, are zero.
Now, we have the following:

Theorem 2.3. If a Kaehlerian conformally recurrent manifold K, is decomposable,
then the recurrence vector is a gradient or the decomposition space €. has constant
curvature.
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Proof. Since R’ = 0(R*, scalar curvature of K,_, is differentiated covariantly
with respect to 2", coordinate of K., it is obvious from theorem (2.1) that

qurs,tu = 5t,quq7‘s + 5t5quq7"s. (29)
where
5tu - 5t,u - 5u,t- (210)
There of (2.9) and Theorem 2.3 yield:

OtuTpgrs + OpgLrstu + OrsThupg = 0.

This is of the form of Theorem 2.4, because of T,,s = Tysp- We therefore appear
at the conditions:
Either ¢, = 0 or Tp4s = 0. In the first case 6, is a gradient while in the second
case, then

R*
(n—r)n—r—1)

Which implies that K, has constant curvature.

qurs = (gprgqs - gpsqu)a

Theorem 2.4. If the recurrence vector of a decomposable space K, of recurrent
conformal curvature on a Kaehlerian manifolds be a gradient then K, has constant
curvature or K,_y has zero scalar curvature.

Proof. Let the recurrence vector §; be a gradient. Equation (2.10) then gives
0t = 0 and (2.9) become:

qurs,tu - qurs,ut =0

This, with the aid of the Ricci identity, is written:
Raqrngtu + RpaTngtu + quasR?tu + RPQTGRZtu =0. (2-11)

Differentiating (2.11) covariantly with respect to z* and using (2.5) and (2.11) we
obtain:

R
n—r)(n—r—1

)5u (gptRuqrs - gp*thrs + gqtRpurs - gunptrs
+ grtquus - gruquts + gstquru - gsuqurt) =0 (212)

Since 6, # 0 for some v, it follows from (2.12) that R* = 0. thus K,,_, have zero
scalar curvature. Equation (2.12) also yields:

gptRuqrs — Gpx th'rs + qt Rpu'rs - gunptrs + Grt quus — Gru quts + Gst quru —Gsu qurt =0
(2.13)
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Multiplying by g?"¢** (2.13) is contracted to

Rys = Egus. (2.14)
r

Also, multiplying (2.13) by ¢** and using (2.14), we have obtained:

R
74]:')vuq1”s - 2Ruqrs + quus + quru = ?(gsugqr - gur‘gqs)'

This gives:

R
TRuqrs - Ruqrs + Ruqsr + Rusrq + Rurqs = ?(gusgqr - gurgqs)-

That is,
R
Rurs:— usYqr — YurYqs)-
’ T(T_D(g 9gr — Gurys)

We denote that the scalar curvature K, as appears in (2.14), is constant. Hence
we are lead to state that K, has constant curvature.
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